Error List of "Modeling, Measuring and Managing Risk"

by G.Ch. Pflug and Werner Römisch

- Page 10, line 2 from above. Instead of

$$
\begin{aligned}
\mathbb{P}\left\{G_{1}^{-1}(U) \leq u, G_{2}^{-1}(1-U) \leq v\right\} & =\mathbb{P}\left\{1-G_{2}(u) \leq U \leq G_{1}(u)\right\} \\
& =\max \left(G_{1}(u)+G_{2}(v)-1,0\right)
\end{aligned}
$$

it should be:

$$
\begin{aligned}
\mathbb{P}\left\{G_{1}^{-1}(U) \leq u, G_{2}^{-1}(1-U) \leq v\right\} & =\mathbb{P}\left\{1-G_{2}(v) \leq U \leq G_{1}(u)\right\} \\
& =\max \left(G_{1}(u)+G_{2}(v)-1,0\right)
\end{aligned}
$$

- Page 15, line 7 from above. Instead of
"The IDF and the IQF are related by Young's inequality

$$
\begin{equation*}
\mathcal{G}(u)+\mathcal{G}^{[-1]}(q) \leq u q \quad \text { for } u \in \mathbb{R}, q \in(0,1) \tag{1.18}
\end{equation*}
$$

where equality holds if and only if $G(u)=q$. The validity of this inequality can be easily seen from Figure 1.4: The sum of the two areas 1 and 2 is less than or equal to $u q$."
it should be:
"The IDF and the IQF are related by Young's inequality

$$
\begin{equation*}
\mathcal{G}(u)+\mathcal{G}^{[-1]}(q) \geq u q \quad \text { for } u \in \mathbb{R}, q \in(0,1) \tag{1.18}
\end{equation*}
$$

where equality holds if and only if $G(u)=q$. The validity of this inequality can be easily seen from Figure 1.4: The sum of the two areas 1 and 2 is greater than or equal to $u q$."

- Page 34, line 13 from above. Instead of

$$
\mathcal{R}\{G\}=\int U(v) d K \circ G(v)=\int\left[\int U(v) d K(v \mid w)\right] d G(w)
$$

it should be

$$
\mathcal{R}\{K \circ G\}=\int U(v) d K \circ G(v)=\int\left[\int U(v) d K(v \mid w)\right] d G(w) .
$$

- Page 39, line 15 from above. Instead of: (R4) it should be: (R3).
- Page 48 , line 12 from below. Instead of: see Section 2.2 .3 it should be: see Section 2.3.
- Page 87, line 5 from below. Instead of
$\mathbb{E}\left[\mathbb{1}_{B} \mathcal{A}_{H}(Y)\right]=\inf \left\{\mathbb{E}(Y Z): Z=Z \mathbb{1}_{B}, Z=h(U), U \sim\right.$ uniform $\left.[0,1]\right\}$.
the correct expression is
$\mathbb{E}\left[\mathbb{1}_{B} \mathcal{A}_{H}\left(Y \mid \mathcal{F}_{1}\right)\right]=\inf \left\{\mathbb{E}(Y Z): \mathbb{E}\left(\phi(Z) \mid \mathcal{F}_{1}\right) \leq \mathbb{1}_{B} \int \phi(h(u)) d u, \phi\right.$ convex,$\left.\phi(0)=0\right\}$.
- Page 90, line 8 from below. Instead of:

$$
\mathbb{E}\left(\frac{L}{\pi_{\alpha}(L)}\right)=1-\alpha
$$

it should read

$$
\mathbb{E} h\left(\frac{L}{\pi_{\alpha}(L)}\right)=1-\alpha .
$$

- Page 98, line 9 from top: Instead of:

$$
\delta(1-\epsilon)(a+b)>0
$$

it should read:

$$
\delta(1-\epsilon)(a+b)>1
$$

- Page 102, top. Instead of:

By (2.79), the representation of $\mathbb{E}-\mathbb{S t d}$ is

$$
\mathbb{E}(Y)-\mathbb{S t d}(Y)=\inf \left\{\mathbb{E}(Y Z): \mathbb{E}(Z)=0, \mathbb{E}\left[(1-Z)^{2}\right] \leq 1\right\}
$$

which is the same as

$$
\mathbb{E}(Y)-\operatorname{Std}(Y)=\inf \left\{\mathbb{E}(Y Z): \mathbb{E}(Z)=0, \mathbb{E}\left[Z^{2}\right] \leq 2\right\} .(2.101)
$$

it should read:
By (2.79), the representation of $\mathbb{E}-\mathbb{S t d}$ is

$$
\mathbb{E}(Y)-\mathbb{S t d}(Y)=\inf \left\{\mathbb{E}(Y Z): \mathbb{E}(Z)=1, \mathbb{E}\left[(1-Z)^{2}\right] \leq 1\right\}
$$

which is the same as

$$
\begin{equation*}
\mathbb{E}(Y)-\operatorname{Std}(Y)=\inf \left\{\mathbb{E}(Y Z): \mathbb{E}(Z)=1, \mathbb{E}\left[Z^{2}\right] \leq 2\right\} \tag{2.101}
\end{equation*}
$$

- Page 112, line 16 from below. Instead of: "version-dependent" it should read: "version-independent".
- Page 148, line 12 from above. Instead of

$$
\mathbb{E}\left[\mathbb{A} \mathbb{V} @ \mathrm{R}_{\alpha}(Y)\right]=\min \left\{\mathbb{E}(Y Z): \mathbb{E}\left(Z \mid \mathcal{F}_{1}\right)=1,0 \leq Z \leq 1 / \alpha\right\}
$$

it should read

$$
\mathbb{E}\left[\mathbb{A} \mathbb{V}_{@} \mathrm{R}_{\alpha}\left(Y \mid \mathcal{F}_{1}\right)\right]=\min \left\{\mathbb{E}(Y Z): \mathbb{E}\left(Z \mid \mathcal{F}_{1}\right)=1,0 \leq Z \leq 1 / \alpha\right\}
$$

- Page 150, line 6 from above. Instead of: (see Example 2.12 (ii)) it should read: (see Example 3.12 (ii)).
- Page 153, line 11 from above. Instead of

$$
\mathbb{A} \mathbb{V}_{@} \mathrm{R}_{\alpha, c}(Y, \mathcal{F})=\sum_{t=1}^{T} \mathbb{E}\left[Y_{t-1}^{b_{t}}\right] \cdot \mathbb{A} \mathbb{V}_{@} \mathrm{R}_{\alpha}\left[\exp \left(\eta_{t}\right)\right]
$$

it should read

$$
\mathbb{A} \mathbb{V} @ \mathrm{R}_{\alpha, c}(Y, \mathcal{F})=\sum_{t=1}^{T} c_{t} \mathbb{E}\left[Y_{t-1}^{b_{t}}\right] \cdot \mathbb{A} \mathbb{V} @ \mathrm{R}_{\alpha}\left[\exp \left(\epsilon_{t}\right)\right]
$$

- Page 220, line 5 from below. Instead of

$$
w=C u+\xi
$$

it should read

$$
W=C u+\xi
$$

